A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation
نویسندگان
چکیده
Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0-2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4-8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes.
منابع مشابه
An Integrated Multi-Omics Approach Reveals the Effects of Supplementing Grass or Grass Hay with Vitamin E on the Rumen Microbiome and Its Function
Rumen function is generally suboptimal leading to losses in methane and nitrogen. Analysis of the rumen microbiome is thus important to understanding the underlying microbial activity under different feeding strategies. This study investigated the effect of forage conservation method and vitamin E supplementation on rumen function using a rumen simulation technique. Ryegrass (GRA) or ryegrass h...
متن کاملEffects of Feeding Rumen Protected Choline and Vitamin E on Milk Yield, Milk Composition, Dry Matter Intake, BodyCondition Score and Body Weight in Early Lactating Dairy Cows
Twenty four primiparous and multiparous Holstein cows on early lactation, beginning five weeks postpartum, were used for four weeks to investigate the effects of supplemention of rumen-protected choline (RPC) or vitamin E on milk yield, milk composition, dry matter intake, body condition score and body weight. The cows were randomly assigned to one of the following treatments: I)no supplement (...
متن کاملThe Effect of Native Grass Substitution Using Jengkol (Archidendron jiringa) Peel and Leaves Powder on in vitro Rumen Fermentation
The effect of substituting native grass with jengkol (Archidendron jiringa) by-product on fermentation characteristics, rumen microbial profile, methane production, and hydrogen balance using in vitro method was investigated. Seven treatments (different composition of native grass, jengkol peel, jengkol leaves, and concentrate) with five replications in a block randomized desi...
متن کاملDeveloping a Modified in vitro Gas Production Technique to Replace the Nylon Bag Method of Evaluating Protein Degradation of Alfalfa Hay in Ruminants
The present study was conducted to investigate the possibility of using a modified in vitro gas production technique in place of the nylon bag method to estimate protein degradability of alfalfa hay in ruminants. In the in situ experiment dacron bags were filled with 3 g alfalfa hay. This was incubated in the rumen of three ruminally cannulated Ghezel rams for the periods of 0, 2, 4, 8, 12, 16,...
متن کاملIn situ Rumen Degradation Characteristics of Maize, Sorghum and Sorghum-Sudan Grass Hybrids Silages as Affected by Stage of Maturity
This research was conducted to investigate in situ degradation characteristics of maize, sorghum and sorghum-Sudan grass hybrids. whole plant of maize (TTM-815, DK-711), sorghum (SS-506, FS-5) and sorghum × Sudan grass hybrids (P-988, Grazer N2) were grown under semi-arid conditions and harvested at different maturity stages (mid-flowering (MF), milk-line (ML) and hard-dough (HD)) and ensiled. ...
متن کامل